

BICYCLOOCTANOID, CARINATONE AND MEGAPHONE TYPE NEOLIGNANS FROM OCOTEA POROSA*

MÁRIO G. DE CARVALHO,† MASSAYOSHI YOSHIDA, OTTO R. GOTTLIEB and HUGO E. GOTTLIEB‡

Instituto de Química, Universidade de São Paulo, 05508 São Paulo, SP, Brazil; ‡Department of Chemistry, Bar-Ilan University, Ramat Gan 52100, Israel

(Received 25 September 1987)

Key Word Index—*Ocotea porosa*; Lauraceae; neolignans; bicyclo[3.2.1]octanoid neolignans; carinatone type neolignans; megaphone type neolignans.

Abstract—Four new neolignans were isolated from the wood of *Ocotea porosa*. Two isomers, belonging to the bicyclo[3.2.1]octanoid 7,3',8,1'-type, differed most conspicuously by the *endo*- or *exo*-relationship of their aryl/methoxyenone units. One of the other two compounds belonged to the megaphone 8,1'-coupled type and the other to the carinatone type. Biosynthesis of the latter may also have initially involved 8,1'-coupling of propenyl- and allyl-phenols, followed by rearrangement of the allyl from 1' to 5'.

INTRODUCTION

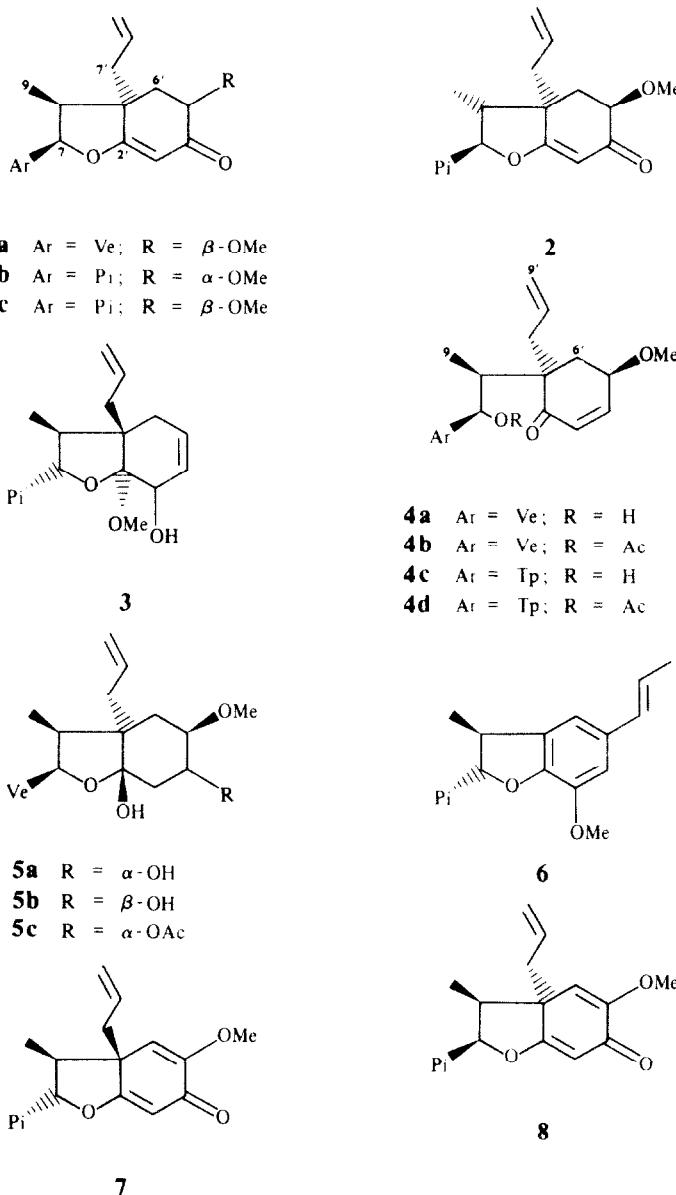
Ocotea porosa (Nees et Mart. ex Nees) L. Barroso (family Lauraceae), named 'imbuia' [2], is one of the most important timbers of southern Brazil. Its major micro-molecular constituent **1a** (porosin) is accompanied by some additional minor neolignans, **1b**, **1c** (porosin-B), **2**, **3**, **4a**, **5a**, **5b**, and **6** (licarin-B) [3]. This list can now be extended to include **7** (burchellin), previously isolated from *Aniba* [4] and *Magnolia* [5] species, **8**, previously isolated from *Aniba* [6] and *Duguetia* [7] species, **9a** (guianin) previously isolated from *Aniba* species [8] as well as the novel compounds **9b**, **10a**, **11a** and **12a**. The existence of **8** in *Duguetia* needs confirmation since so far no other neolignan has been isolated from Annonaceae. The nomenclature and numbering of the neolignans discussed in this report follow the rules outlined in a review [9].

RESULTS AND DISCUSSION

The molecular formulas of the novel compounds, $C_{20}H_{22}O_5$ (**9b**, **10a**), $C_{20}H_{20}O_5$ (**11a**) and $C_{21}H_{26}O_5$ (**12a**), were determined by a combination of low resolution mass spectrometry and C and H counts from NMR spectra. Consideration of the nature and number of ether functions revealed by the 1H NMR spectrum allowed expansions of these formulas to $C_{18}H_{17}O_2(OMe)(O_2CH_2)$ (**9b**, **10a**), $C_{18}H_{14}O(OMe)(O_2CH_2)$ (**11a**) and $C_{18}H_{17}O_2(OMe)_3$ (**12a**). Analysis of SFORD ^{13}C NMR spectra led to further definitions: $Me(CH_2)_2(CH)_9C_5(CO)(OH)(OMe)(O_2CH_2)$ (**9b**, **10a**), $Me(CH_2)_2(CH)_7C_7(CO)(OH)(OMe)(O_2CH_2)$ (**11a**) and

$Me(CH_2)_3(CH)_8C_4(CO)_2(OMe)_3$ (**12a**). The new compounds are thus again most probably oxidative dimers of propenyl- and allylphenols, i.e. neolignans.

Oxidation with Jones' reagent of the isomers **9b** and **10a** led, in both cases, to cyclopentanone derivatives (ν_{max} 1760 cm^{-1}), **13** and **14**, respectively. In the neolignan group of natural products this is evidence for bicyclo [3.2.1] octane skeletons. The relative stereochemistry of **9a** and **9b** versus **10a** was assigned by inspection of the ^{13}C NMR spectra. In the former pair of compounds the same molecular face is occupied by the one-carbon bridge and the C-methyl ($C-9$: $\delta 17.55 \pm 0.15$), while in **10a** these groups occupy opposite faces ($C-9$: $\delta 13.0$). In all three cases the C-Me and the aryl groups keep a *trans*-relationship ($\delta 1.04 \pm 0.14$) [10].

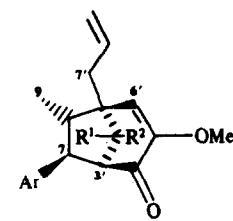

The 1H NMR spectra of guianin (**9a**) and of **9b** are very similar and comparable with the spectrum of **10a** (Table 1). The major spectral difference between **9a** and **9b** refers to H-2', H-3' and H-6' coupling. In the case of **9a** no coupling is observed in this system, while in the case of **9b** H-2' is coupled to the vicinal H-3' ($J=4.5$ Hz) on one side and to the *W*-related H-6' ($J=2$ Hz) on the other. These facts can be explained solely in terms of the opposite location of H-2' in **9a** (guianin) and **9b** (2'-epiguianin).

The occurrence of *W*-coupling involving H-2', observed in the 1H NMR spectrum of **9b** and confirmed by double resonance experiments, requires the presence of a proton at the β -position of the enone ($\delta 5.88$). Hence, the singlet at $\delta 6.1$ in the spectrum of **9a** may also refer to H-6'. Indeed oxidation of both compounds leads to **13** ($\delta 6.24$ for H-6') and all three compounds are thus characterized as α -methoxyenones.

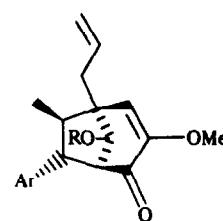
Another useful piece of evidence, based on the NMR frequency of the vinylic proton, concerns its *endo*- or *exo*-relation with respect to the aryl group. For each given constitutional type the former situation leads to H-6' signals at lower field. Thus H-6' signals at $\delta 6.10$ (**9a**) and 5.88 (**9b**) versus 5.64 (**10a**) indicate *endo*- versus *exo*-situations; and H-6' signals at 6.24 (**13**) versus 5.67 (**14**) again indicate respectively, *endo*- versus *exo*-situations.

*Part LXXXVI in the series 'The Chemistry of Brazilian Lauraceae'. For Part LXXXV see ref. [1]. Based on the Doctorate thesis presented by M.G. de C. to Universidade de São Paulo (1986).

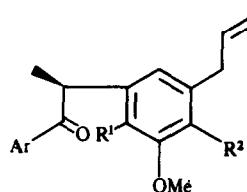
†Present address: Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23460 Seropédica, RJ, Brazil.

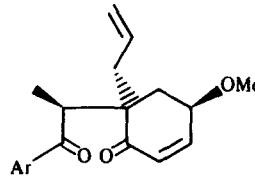

Other examples of compounds with *endo*- or *exo*- configurations can be found in the literature [8, 10].

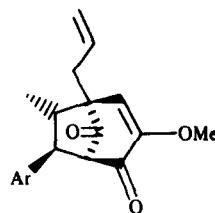
Compound **11a** was recognized to be a piperonyl analogue of the veratryl compound carinatone (**11b**) [11]. As in **11b** the allyl substituted ring of **11a** carries two *meta*-related aromatic protons (δ 6.59, 6.67, two *d*, *J* = 2 Hz) and a methoxyl, the ^{13}C NMR signal of which (δ 55.9) reveals vicinality to no more than one unsubstituted carbon. However in contradiction to the model, the hydroxyl and allyl groups of **11a** must be vicinal. The *ortho*-hydroxyl causes a γ -effect on the benzylic carbon of the allyl (δ 33.7 for **11a** vs 40.0 in **11b**) and acetylation of this hydroxyl causes a 0.13 ppm diamagnetic shift of the signal due to the benzylic protons. Finally neither hydroxyl nor allyl can be *ortho*-related to the C-C bridge that unites the two phenylpropanoid moieties. It is such an *ortho*-hydroxyl that produces a γ -effect on C-8 of

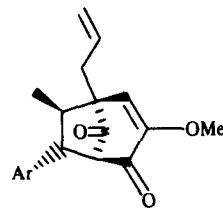

carinatone (δ 47.3 for **11a** vs 39.8 for **11b**). The unusual oxygenation pattern of **11a** suggests the occurrence of a rearrangement (**15** \rightarrow **16** \rightarrow **11a**) in its biosynthesis.

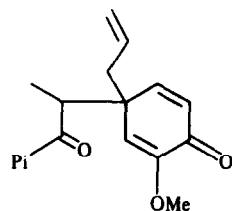
The ORD curve for (*S*)-(-)-carinatone (**11b**) shows a negative Cotton effect at 276 nm and a positive Cotton effect at 307 nm. Compound **11a**, with a nearly identical ORD curve, must equally show the (8*S*)-configuration.

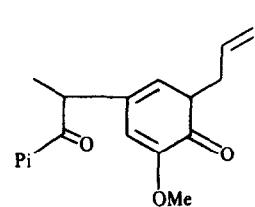

Compound **12a** differs from oxidized megaphone **12b** [12] only with respect to the nature of the aryl group, a veratryl in **12a** and a tri-*O*-methylpyrogallol in **12b**. The ^{13}C NMR spectrum of the model **12b** has not been recorded. Thus the carbon sequences C-1 to C-9 in carinatone (**11b**) and C-1' to C-9' in megaphone (**4c**) were selected as models, performing their role with success (Table 2). The prominent mass spectral features of **12a**, m/z 358 [M]⁺, 194 [C₆H₃(OMe)₂COEt]⁺, 165 [C₆H₃(OMe)₂CO]⁺ and of **12b**, m/z 388 [M]⁺, 224


9a Ar = Pi; R¹ = OH; R² = H
9b Ar = Pi; R¹ = H; R² = OH
9c Ar = Pi; R¹ = H; R² = Ac


10a Ar = Pi; R = H
10b Ar = Pi; R = Ac


11a Ar = Pi; R¹ = H; R² = OH
11b Ar = Ve; R¹ = OH; R² = H
11c Ar = Pi; R¹ = H; R² = OAc


12a Ar = Ve
12b Ar = Tp


13

14

15

16

[C₆H₂(OMe)₃COEt]⁺, 195[C₆H₂(OMe)₃CO]⁺, are again comparable. Finally, the absolute configuration of megaphone (4c) has been established by X-ray crystallography. Thus the absolute configurations not only of megaphone's oxidation product 12b ($[\alpha]_D = -32.8^\circ$), but also of 12a ($[\alpha]_D = -29.6^\circ$) are as shown.

Compounds 5a and 5b have been isolated previously from *Ocotea porosa*. Acetylation by acetic anhydride-pyridine at room temperature led to the acetate 5c and to the megaphone type neolignan 4a, respectively [3]. These reactions were now repeated at reflux temperature. Compound 5a again gave 5c, but 5b gave the acetate 4b. Megaphone (4c) was reported to yield 4d in an analogous reaction [12].

EXPERIMENTAL

Isolation of the constituents. Trunk wood of *Ocotea porosa*, collected at the Forest Reserve of Instituto Botânico (São Paulo, SP) was dried and pulverized. The powder (0.7 kg) was extracted successively with petrol and CH₂Cl₂. The solvents were evapd giving resp. residues A (6.6 g) and B (13 g). A was partitioned with C₆H₁₄-MeOH 90%. Both solns were evapd giving resp. residues C (3.5 g) and D (2.2 g). C was composed of aliphatic material present also in most other fractions described below. D and B were united. The mixture was submitted to dry CC (300 g silicagel deactivated with 10% H₂O, development with CHCl₃). The extruded column was divided into 23 equal portions, subsequently extracted with CHCl₃. Evapn of the solvent gave

Table 1. NMR data of bicyclo[3.2.1]octanoid neolignans (CDCl_3 , δ values, multiplicities, J in Hz in parentheses)

H	9a [8]	9b	10a	13	14
	220 MHz	300 MHz	300 MHz	80 MHz	80 MHz
2	6.51 <i>s</i>	6.51 <i>d</i> (1.5)	7.07 <i>d</i> (2)	6.46 <i>d</i> (2)	6.55 <i>d</i> (2)
6	6.53 <i>d</i> (8)	6.52 <i>dd</i> (8.5, 1.5)	6.75 <i>dd</i> (8.2)	6.55 <i>dd</i> (8.2)	6.6 <i>dd</i> (8.2)
5	6.66 <i>d</i> (8)	6.66 <i>d</i> (8.5)	6.68 <i>d</i> (8)	6.68 <i>d</i> (8)	6.70 <i>d</i> (8)
O_2CH_2	5.82 <i>s</i>	5.87 <i>s</i>	5.91 <i>s</i>	5.90 <i>s</i>	5.93 <i>s</i>
8'	5.75–5.92	5.99 <i>m</i>	5.86 <i>ddt</i>	5.7–6.17 <i>m</i>	5.75–6.1 <i>m</i>
6'	6.10 <i>s</i>	5.88 <i>d</i> (2)	5.64 <i>s</i>	6.24 <i>s</i>	5.57 <i>s</i>
9'	5.13–5.32	5.27 <i>dm</i> (17.5)	5.21 <i>dq</i> (17.5, 2)	5.33 <i>m</i>	5.25 <i>m</i>
9'	5.24 <i>dm</i> (10.5)	5.12 <i>ddt</i> (10.2, 1)	5.17 <i>m</i>	5.09 <i>m</i>	
2'	3.98 <i>s</i>	4.16 <i>dd</i> (4.5, 2)	4.01 <i>br s</i>	—	—
OMe	3.62 <i>s</i>	3.64 <i>s</i>	3.65 <i>s</i>	3.66 <i>s</i>	3.71 <i>s</i>
3'	3.19 <i>d</i> (7)	3.24 <i>dd</i> (7.4, 5)	2.97 <i>br s</i>	3.87 <i>d</i> (7)	3.52
OH			2.55 <i>br s</i>		
7'		2.50 <i>dd</i> (14.5, 8.5)	2.53 <i>ddt</i>		
	2.64 <i>dd</i> (14, 7)		(14, 7.5, 1.5)	2.44 <i>d</i> (12)	2.52 <i>d</i> (9)
7'		2.42 <i>dd</i> (14.5, 8.5)	2.39 <i>dd</i> (14, 7.5)		
7	3.35 <i>d</i> (7)	3.03 <i>dd</i> (7.6)	2.46 <i>br dd</i> (8, 1.5)	3.1 <i>dd</i> (7.5, 5)	2.55 <i>d</i> (7)
8	2.22 <i>dq</i> (7)	2.37 <i>qd</i> (7.6)	2.37 <i>dq</i> (8.7)	2–2.8 <i>m</i>	2.1 <i>m</i>
9	1.23 <i>d</i> (7)	1.18 <i>d</i> (7)	0.95 <i>d</i> (7)	1.12 <i>d</i> (6)	1.04 <i>d</i> (6)

Double resonance experiments. **9b**: H-9→H-8*d* (6); H-2'→H-3'*d* (7) and H-6'*s*; H-3'→H-2'*d* (2) and H-7*d* (6); H-7→H-8'*q* (7) and H-3 *d* (4.5); H-8'→H-9'*d* (2), H-9'*d* (2), H-7'*d* (14.5) and H-7'*d* (14.5); H-7', H-7'→H-8'*dd* (17.5, 10.5), H-9'*dd* (17.5, 2) and H-9'*dd* (10.5, 2). **10a**: H-9→H-8 *d* (8); H-2'→H-3'*d* (1.5) and sharpens the H-7 *dd*; H-3'→H-7 *d* (8) and sharpens the H-2'*s*; H-8'→H-7'*dt* (14, 1.5), H-7'*br d* (14) and affects 2 H-9'.

Table 2. NMR data of megaphone type neolignans and of model compounds (CDCl_3 , δ values, multiplicities, J in Hz in parentheses)

Position	¹ H NMR			¹³ C NMR	
	60 MHz	100 MHz	12a	20 MHz	
	12a	12b [12]		11b [11]	4c [12]
1	—	—	—	129.6 <i>s</i>	127.6
2	7.50 <i>d</i> (2)	7.18 <i>s</i>	—	110.5 <i>d</i>	109.5
3	—	—	—	148.6 <i>s</i>	148.8
4	—	—	—	152.7 <i>s</i>	153.0
5	6.90 <i>d</i> (8)	—	—	109.8 <i>d</i>	110.2
6	7.60 <i>dd</i> (8.2)	7.18 <i>s</i>	—	122.4 <i>d</i>	123.3
7	—	—	202.2 <i>s</i>	199.6	
8	4.2–4.5	4.04 <i>q</i> (7.5)	—	41.9 <i>d</i>	39.8
9	1.21 <i>d</i> (8)	1.18 <i>d</i> (7.6)	—	11.9 <i>q</i>	17.9
1'	—	—	49.9 <i>s</i>	—	52.3
2'	—	—	201.2 <i>s</i>	—	193.4
3'	5.95 <i>d</i> (10)	5.96 <i>d</i> (10.2)	—	132.7 <i>d</i>	132.0
4'	6.95 <i>d</i> (10)	6.93 <i>dd</i> (10.2, 2.2)	—	147.6 <i>d</i>	149.9
5'	4.05 <i>d</i> (10)	4.3 <i>m</i>	—	73.0 <i>d</i>	71.0
6'	2.93 <i>dd</i> (10, 1.2)	2.1–2.5	—	38.8 <i>t</i>	37.7
	2.1–2.6	—	—	—	—
7'	2.1–2.6	2.1–2.5	—	34.6 <i>t</i>	36.2
8'	5.5–5.9	4.04 <i>q</i> (7.5)	—	128.3 <i>d</i>	128.7
9'	5–5.4	5.09, 5.22	—	118.1 <i>t</i>	119.1
OMe	3.42 <i>s</i>	3.46 <i>s</i>	—	55.8 <i>q</i>	55.9
	3.84 <i>s</i>	3.90 <i>s</i>	—	55.7 <i>q</i>	55.9
	3.88 <i>s</i>	3.90 <i>s</i>	—	55.7 <i>q</i>	55.8
	3.90 <i>s</i>	3.90 <i>s</i>	—	—	—

residues which were submitted to prep. TLC (silica gel) and, when applicable, to crystallization. Thus fr. 1 (965 mg) gave **9a** (940 mg) gave **1b** (91 mg), **1c** (100 mg), **1a** (102 mg), **7** (103 mg); **10a** (234 mg) and **11a** (161 mg); fr. 9 (902 mg) gave **8** (53 mg) and **1c** (23 mg); fr. 10 (301 mg) gave **1a** (186 mg), **1b**+**1c** (93 mg) and

10a (25 mg); frs 11–14 (1.6 g) gave **1a** (390 mg) and impure **1a**; frs 15+16 (916 mg) gave **12a** (92 mg) and **1a+1b**; fr. 17 (551 mg) gave **1a+1b+12a**; frs 18–22 (2.5 g) gave **5a** (476 mg), impure **5a** and **5b** (93 mg); fr. 23 (3.5 g) gave **5a+5b** and a mixture. Acetylation of this mixture and subsequent chromatography of the product gave **5c** (140 mg) and **4b** (152 mg).

Three of the new compounds (**9b**, **10a**, **12a**) were obtained as viscous oils. Their recognition, in repeated separations, relied on comparison of chromatographic behaviour (see above) of the compounds and several known companion substances (**1a**, **1b**, **1c**, **5a**, **5b**, **6**, **7**, **8**, **9a**).

(**7S**, **8S**, **1'S**, **2'S**, **3'S**)- $\Delta^{5',8'}\text{-}2'\text{-Hydroxy-}5'\text{-methoxy-}3,4\text{-methylenedioxy-}4'\text{-oxo-}7.3',8.1'\text{-neolignan}$ (**9b**). Viscous oil. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 234, 274 (ϵ 8900, 8600). IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3420 (O—H), 1690 (C=O), 1620, 1490, 1440 (Ar). ^1H NMR: Table 1. ^{13}C NMR (20 MHz, CDCl_3): δ : 194.3 (s, C-4'), 151.7 (s, C-5'), 147.4 (s, C-3), 146.1 (s, C-4), 134.2 (d, C-8'), 132.9 (s, C-1), 121.0 (d, C-6), 119.2 (d, C-6'), 118.6 (t, C-9'), 108.2 (d, C-2), 107.8 (d, C-5), 100.6 (t, O_2CH_2), 80.7 (d, C-2'), 62.6 (d, C-3'), 54.7 (q, OMe), 50.1 (d, C-7), 48.9 (s, C-1'), 45.4 (d, C-8), 36.7 (t, C-7'), 17.7 (q, C-9). MS m/z (rel. int.): 342 [M] $^+$ (80), 271 (17), 180 (27), 162 (100), 149 (35), 135 (32), 121 (20). CD (c 3.4 mg/100 ml MeOH): $[\theta]_{315}^{\text{max}} = -45$ 800. **Acetate** (**9b**) 30 mg, Ac_2O 1 ml, pyridine 1 ml, 24 hr, room temp, purification by silica gel TLC, gave **9c** (30 mg), viscous oil. ^1H NMR (300 MHz, CDCl_3): δ : 6.67 (d, $J = 8.5$ Hz, H-5), 6.52 (dd, $J = 8.5$, 1.5 Hz, H-6), 6.51 (d, $J = 1.5$ Hz, H-2), 6.02 (m, H-8'), 5.92 (d, $J = 2$ Hz, H-6'), 5.88 (s, O_2CH_2), 5.24 and 5.22 (2 H-9'), 5.17 (dd, $J = 4.5$, 2 Hz, H-2'), 3.66 (s, OMe), 3.39 (dd, $J = 7$, 4.5 Hz, H-3'), 3.15 (dd, $J = 7$, 6 Hz, H-7), 2.45 and 2.34 (2H-7'), 2.42 (qd, $J = 7$, 6 Hz, H-8), 2.00 (s, AcO), 1.23 (d, $J = 7$ Hz, H-9). ^{13}C NMR (75 MHz, CDCl_3): δ : 192.6 (s, C-4'), 170.6 (s, AcO), 151.8 (s, C-5'), 147.8 (s, C-3), 146.6 (s, C-4), 133.6 (d, C-8'), 132.3 (s, C-1), 121.2 (d, C-6), 119.4 (d, C-6'), 118.9 (t, C-9'), 108.4 (d, C-2), 108.2 (d, C-5), 101.0 (t, O_2CH_2), 80.8 (d, C-2'), 59.4 (d, C-3'), 55.0 (q, OMe), 50.3 (d, C-7), 47.8 (s, C-1'), 45.1 (d, C-8), 36.9 (t, C-7'), 21.0 (q, AcO), 18.0 (q, C-9).

(**7R**, **8R**, **1'S**, **2'R**, **3'S**)- $\Delta^{5',8'}\text{-}2'\text{-Hydroxy-}6'\text{-methoxy-}3,4\text{-methylenedioxy-}4'\text{-oxo-}7.3',8.1'\text{-neolignan}$ (**10a**). Viscous oil. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 238, 262, (ϵ 9200, 8700). IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3420 (O—H), 1690 (C=O), 1620, 1490, 1440 (Ar). ^1H NMR: Table 1. ^{13}C NMR (20 MHz, CDCl_3): δ : 195.7 (s, C-4'), 151.1 (s, C-6'), 147.4 (s, C-3), 145.7 (s, C-4), 136.0 (s, C-1), 134.5 (d, C-8'), 121.6 (d, C-6), 120.9 (d, C-5'), 117.3 (t, C-9'), 108.9 (d, C-5), 107.4 (d, C-2), 100.4 (t, O_2CH_2), 78.8 (d, C-2'), 63.4 (d, C-3'), 55.0 (s, C-1'), 54.9 (q, OMe), 53.9 (d, C-7), 48.0 (d, C-8), 37.0 (t, C-7'), 13.0 (q, C-9'). MS m/z (rel. int.): 342 [M] $^+$ (100), 271 (35), 179 (85), 162 (55), 149 (38), 135 (35), 121 (22). CD (c 3.4 mg/100 ml MeOH): $[\theta]_{312}^{\text{max}} = -56$ 700. **Acetate** (**10a**) 53 mg, Ac_2O 1.5 ml, pyridine 1.5 ml, 24 hr, room temp, purification by silica gel TLC, gave **10b** (40 mg), viscous oil. IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 1740 (C=O), 1710 (C=O), 1600, 1490, 1450 (Ar). ^1H NMR (300 MHz, CDCl_3): δ : 6.82 (d, $J = 2$ Hz, H-2), 6.71 (d, $J = 8$ Hz, H-5), 6.67 (dd, $J = 8$, 2 Hz, H-6), 5.93 (s, O_2CH_2), 5.80 (m, H-8'), 5.65 (s, H-6'), 5.14 and 5.13 (m, 2H-4'), 5.10 (br s, H-2'), 3.66 (s, OMe), 2.99 (br s, H-3'), 2.54 (dd, $J = 8$, 1.5 Hz, H-7), 2.40 (m, 2H-7', H-8), 2.16 (s, AcO), 0.99 (d, $J = 7$ Hz, 3H-9). MS m/z (rel. int.): 384 [M] $^+$ (80), 324 (73), 297 (23), 271 (20), 179 (70), 175 (20), 162 (100), 149 (98), 135 (60), 121 (30).

(**8S**)- $\Delta^{8'}\text{-}4'\text{-Hydroxy-}3'\text{-methoxy-}3,4\text{-methylenedioxy-}7\text{-oxo-}8.1',7.1'\rightarrow5'\text{-neolignan}$ (**11a**). Colourless crystals, mp 103–105° (petrol– Me_2CO). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 230, 278, 312 (ϵ 5400, 1900, 1800). IR $\nu_{\text{max}}^{\text{Br}}$ cm^{-1} : 3400 (O—H), 1670 (C=O), 1610, 1490, 1440 (Ar). ^1H NMR (100 MHz, CDCl_3): δ : 7.55 (dd, $J = 8$, 2 Hz, H-6), 7.42 (d, $J = 2$ Hz, H-2), 6.76 (d, $J = 8$ Hz, H-5), 6.67 (d, $J = 2$ Hz, H-6') 6.59 (d, $J = 2$ Hz, H-2'), 5.98 (s, O_2CH_2), 6.2–5.7 (m, H-8'), 5.56 (s, OH), 5.1–4.9 (m, 2H-9'), 4.47 (q, $J = 7$ Hz, H-8), 3.84 (s, OMe), 3.37 (d, $J = 6$ Hz, 2H-7'), 1.48 (d, $J = 7$ Hz, 3H-9). ^{13}C

NMR (20 MHz, CDCl_3): δ : 198.6 (s, C-7), 151.3 (s, C-4'), 148.1 (s, C-3), 146.5 (s, C-4'), 142.2 (s, C-3'), 136.4 (d, C-8'), 132.7 (s, C-1'), 131.1' (s, C-1), 125.9 (s, C-5'), 124.8 (d, C-6), 121.7 (d, C-5), 115.4 (t, C-9'), 108.6 (d, C-6'), 107.5 (d, C-2, C-2'), 101.6 (t, O_2CH_2), 55.9 (q, OMe), 47.3 (d, C-8), 33.7 (t, C-7'), 19.6 (q, C-9). MS m/z (rel. int.): 340 [M] $^+$ (12), 191 (100), 149 (65), 121 (10). CD (c 3.4 mg/100 ml MeOH): $[\theta]_{307}^{\text{max}} + 16$ 300, $[\theta]_{270}^{\text{max}} - 10$ 500. **Acetate** (**11a**) 22 mg, Ac_2O 1 ml, pyridine 1 ml, 24 hr, room temp, purification by silica gel TLC, gave **11c** (22 mg), IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 1760 (C=O), 1670 (C=O), 1600, 1490, 1440 (Ar). ^1H NMR (100 MHz, CDCl_3): δ : 7.54 (dd, $J = 8$, 2 Hz, H-6), 7.40 (d, $J = 2$ Hz, H-2), 6.76 (d, $J = 8$ Hz, H-5), 6.72 (br s, H-2', H-6'), 5.98 (s, O_2CH_2), 6.0–5.6 (m, H-8'), 5.1–4.9 (m, 2H-9'), 4.54 (q, $J = 7$ Hz, H-8), 3.78 (s, OMe), 3.24 (d, $J = 6$ Hz, 2H-7'), 2.28 (s, AcO), 1.50 (d, $J = 7$ Hz, 3H-9). MS m/z (rel. int.): 382 [M] $^+$ (5), 340 (14), 191 (65), 149 (100), 121 (11).

(**8S**, **1'R**, **5'R**)- $\Delta^{5',8'}\text{-}3,4\text{-Trimethoxy-}7,2'\text{-dioxo-}8.1'\text{-neolignan}$ (**12a**). Viscous oil. $[\alpha]_D = -29.6^\circ$ (c 1.0, CHCl_3). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 236, 274, 302 (ϵ 23 000, 21 900, 12 800). IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 1670 (C=O), 1600, 1500, 1450 (Ar). ^1H and ^{13}C NMR: Table 2. MS m/z (rel. int.): 358 [M] $^+$ (5), 194 (60), 165 (100). CD (c 3.6 mg/100 ml MeOH): $[\theta]_{333}^{\text{max}} - 1720$, $[\theta]_{295}^{\text{max}} + 680$, $[\theta]_{245}^{\text{max}} + 1400$.

(**7S**, **8S**, **1'S**, **3'S**)- $\Delta^{5',8'}\text{-}5'\text{-Methoxy-}3,4\text{-methylenedioxy-}2',4'\text{-dioxo-}7.3',8.1'\text{-neolignan}$ (**13**). 12 mg in Me_2CO , Jones' reagent, extraction with CHCl_3 , purification by silica gel TLC, gave **13** 5 mg, viscous oil. IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 1760 (C=O), 1690 (C=O), 1600, 1500, 1450 (Ar). ^1H NMR: Table 1. MS m/z (rel. int.): 340 [M] $^+$ (82), 299 (13), 271 (31), 175 (35), 162 (100), 149 (65), 135 (45).

(**7R**, **8R**, **1'S**, **3'S**)- $\Delta^{5',8'}\text{-}6'\text{-Methoxy-}3,4\text{-methylenedioxy-}2',4'\text{-dioxo-}7.3',8.1'\text{-neolignan}$ (**14**). 14 mg in Me_2CO , Jones' reagent, extraction with CHCl_3 , purification by silica gel TLC, gave **14** 7 mg, viscous oil. IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 1760 (C=O), 1680 (C=O), 1600, 1490, 1440 (Ar). ^1H NMR: Table 1. MS m/z (rel. int.): 340 [M] $^+$ (79), 325 (12), 299 (28), 271 (25), 175 (40), 162 (100), 149 (93), 135 (50).

Acknowledgements—The authors are grateful to CAPES (financial aid, graduate fellowship to M. G. de C.), CNPq (fellowships to M. Y. and O.R.G.), FAPESP and FINEP (financial aid).

REFERENCES

1. Barbosa-Filho, J. M., Yoshida, M., Gottlieb, O. R., Barbosa, R. de C. S. B. C., Giesbrecht, A. M. and Young, M. C. M. (1987) *Phytochemistry* **26**, 2615.
2. Vattimo, I. de (1956) *Rodriguesia* **30/31**, 265.
3. Dias, D. A., Yoshida, M. and Gottlieb, O. R. (1986) *Phytochemistry* **25**, 2601.
4. Martinez V., J. C., Maia, J. G. S., Yoshida, M. and Gottlieb, O. R. (1980) *Phytochemistry* **19**, 474.
5. Iida, T. and Ito, K. (1983) *Phytochemistry* **22**, 763.
6. Gottlieb, O. R., Silva, M. L. da, and Ferreira, Z. S. (1975) *Phytochemistry* **14**, 1825.
7. Aiba, C. J., Gottlieb, O. R. and Maia, J. G. S. (1978) in *Prog. Chem. Org. Nat. Prod.* **35**, 1.
8. Fernandes, J. B., Gottlieb, O. R. and Maia, J. G. S. (1976) *Phytochemistry* **15**, 1033.
9. Gottlieb, O. R. (1978) *Prog. Chem. Org. Nat. Prod.* **35**, 1.
10. von Bülow, M. V., Franca, N. C., Gottlieb, O. R. and Puentes-Suarez, A. M. (1973) *Phytochemistry* **12**, 1805.
11. Kawanishi, K., Uhara, Y. and Hashimoto, Y. (1982) *Phytochemistry* **21**, 929.
12. Kupchan, S. M., Stevens, K. L., Rohlfing, E. A., Sickles, B. R., Sneden, A. T., Miller, R. W. and Bryan, R. F. (1978) *J. Org. Chem.* **43**, 586.